Introducing Five Types of Stamping Processes: Milling, Machining, Die-Casting, Investment Casting, and Forging
Knowledge

Introducing Five Types of Stamping Processes: Milling, Machining, Die-Casting, Investment Casting, and Forging

Stamping is a metal shaping process that involves the use of punches and dies to shape thin-walled metal parts.
Published: Jun 26, 2023
Introducing Five Types of Stamping Processes: Milling, Machining, Die-Casting, Investment Casting, and Forging

Stamping Operation

拳和安装在机械或死亡hydraulic presses and they perform two functions during the stamping process: shearing and bending. Mechanical presses utilize a flywheel to store the energy required for the stamping operation. The flywheel runs continuously and is engaged by a clutch only when a press stroke is needed. The drawback of mechanical presses is the driving force varies with the length of the stroke. Hydraulic presses use pressurized oil acting against one or more pistons to drive the punch and die on the press. It is capable of providing a full force of the hydraulically driven piston over the entire length of the stroke. However, hydraulic presses are slow compared to mechanical presses. Most stamping operations are carried out on high-speed mechanical presses even though they are more expensive than hydraulic presses.

The stamping operation can be done at either a single die station or multiple die stations using progressive dies. Progressive dies are often used when the part contains closely spaced features or if they have a bend angle greater than 90°. They can also reduce die wear and decrease the amount of spring back (thus improves geometric accuracy). The disadvantage of the progressive die is they require multiple stations, which requires more space to accommodate additional presses.

In order to minimize die cost, the following guideline should be followed while designing parts for stamping manufacturing process:

  • Minimize the number of distinct features in a part.
  • Avoid closely spaced feature.
  • Avoid the use of narrow cutouts and narrow projections.
  • Minimize the number of bend stages in a part.
  • Bend angles greater than 90° should be avoided if possible.
  • Avoid side action feature.

Processing Technology Introduction

Investment Casting

Investment casting is sometimes called lost wax process where a ceramic mold is used to form the desired part. In order to fabricate the ceramic mold, a metal mold is made by machining or casting. Wax is then injected into the mold and is removed after it cools. The wax, which resembles the desired part, is then coated with ceramic slurry in several layers. The completed ceramic slurry is placed in a furnace to harden and the wax removed by melting and evaporation. The desired part is made by filling the mold cavity with molten metal. After solidification, the mold is destroyed and the part removed. Investment casting is capable of surface finishes such that machining is not generally required.

Investment cast parts can be made of steel because the ceramic mold can withstand the high temperature of molten steel. It is used when low production volumes are expected.

Die-Casting

类似于注塑、压铸注入a melt into a metal mold. The melt then allowed to cool and solidify in the mold. The cost of the mold increase as part geometry becomes more complex. The cycling time required increase as the wall thickness increase because more time is needed for solidification. Parts that contain undercuts are not generally die-cast because they are difficult to remove from the mold. Since the molds used in die-casting are made of steel, only metals with relatively low melting temperatures can be used. There are two types of die casting machines: a hot chamber machine and a cold chamber machine. A hot chamber machine has its injection mechanism submerged in the molten metal and it can be used for a part made with alloys with a lower melting temperature that does not chemically attack the submerged injection mechanism. Because the injection mechanism is constantly subjected to high temperatures, it tends to shorten the life of hot chamber machines. Cold chamber machine is sometimes used, especially when producing parts with higher melting temperatures. In a cold chamber machine, molten metal is stored in a separate furnace and the machine barrel is filled upon mold closure. The plunger in the barrel then forces the melt into the mold to form the part.

Forging

The forging process involves deforming a hot workpiece with dies attached to a mechanical or hydraulic press. Forging is used to produce some of the highly stressed parts in tools and aircraft because forged parts have high resistance to shock and fatigue. Since forged parts are plastically deformed, they are stronger and more ductile than parts produced with die-casting.

Machining

Machining is a part removal process in which small chips are removed from a solid workpiece to obtain the desire dimension and geometry. Machining is not an economical process because it is relatively slow when compared to other manufacturing processes such as forging. The process also creates a great deal of scrap material, which increases costs as more raw materials are needed. In most cases, machining is used to improve the tolerances or surface finish of part made by other processes. Some examples of machining methods are: Lathes: Lathes are used to produce cylindrical exterior or interior surfaces. The workpiece is mounted onto the spindle and rotates while the cutting tool is fed into the workpiece. Lathes can also be used to product screw threads (threading) with the appropriate cutting tool.

Milling

Milling machines can be used to form slots, angles, concave and convex contours on the surface of the workpiece. Unlike lathes, the cutting tool is rotated and the workpiece is fed into the tool in a milling machine.

Published by Jun 26, 2023 Source :engineering

Further reading

You might also be interested in ...

Headline
Knowledge
An In-Depth Exploration of The Electroplating Process for Plastic ABS
In recent years, plastic electroplating has been widely used in decorative electroplating of plastic parts. ABS plastic is the most widely used kind of plastic electroplating.
Headline
Knowledge
A Closer Look at the Structural Features of Horizontal Lathes
The advantage of the gearbox is that it can accurately control the speed of the main shaft without excessively high main shaft speed, belt friction consumption, and slippage. Because the main shaft is placed horizontally, it is also called a horizontal lathe.
Headline
Knowledge
The Advantages of Powder Coatings: Exploring Their Benefits
Powder coatings were developed in the 1950s as an alternative to traditional finishes such as liquid coatings. While the versatility and appeal of liquid coatings isn't likely to disappear anytime soon, powder coatings offer many advantages and are growing in popularity.
Headline
Knowledge
Understanding CBN Tools
CBN turning tools are tightly sintered from boron nitride and tungsten carbide bases. The hardness of boron nitride is next to PCD. It has excellent chemical stability and will not produce affinity with iron, cobalt, and nickel-based metals. Therefore, it is especially suitable for work hardening steel, with a hardness above HRC45. Chilled cast iron and heat-resistant steel (Inconel) are also suitable.
Headline
Knowledge
Understanding the Structure and Operation of a Slotting Machine
Slotting machines are reciprocating machines that are mainly used to manufacturing horizontal, vertical or flat surfaces.
Headline
Knowledge
A Comprehensive Examination of Hyperautomation and its Impact on Business Processes
Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Headline
Knowledge
5 Essential Values to Understand Automation
The emergence of automation has had a great impact on many industries. Many highly repetitive factory operations may restrict production capacity. With the introduction of Industry 4.0, various technologies have led to the automation of production lines, from the supplying of raw materials, to assembly, distribution, and packaging. People are taking notice of these very important developments, and this article will explore some of these new forms of automation, and the value they bring.
Headline
Knowledge
Understanding the Role of Rotary Broaching
Rotary broaches (also known as oscillating or hexagonal broaches) are one of the commonly used CNC tools in metal-cutting production. It is used to process polygonal parts and inner holes (especially suitable for blind holes) and other special-shaped inner holes.
Headline
Knowledge
Frequently Employed Processing Techniques
In the field of manufacturing processing, common processing methods include broaching, boring, grinding, milling, etc.
Headline
Knowledge
What Constitutes Pneumatic Tools: Components, Pros, and Cons?
A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.
Headline
Knowledge
What Purpose Do Vernier Calipers Serve?
One of the tools a mechanic must use is a caliper. Although not as accurate as a micrometer, the caliper is a convenient and practical tool that can help mechanics quickly measure parts and use the measurement results to evaluate subsequent processing.
Headline
Knowledge
How Familiar Are You with Hardware Fasteners?
When it comes to fasteners, everyone seems to know a little bit about it. After all, hardware such as screws and nuts are commonplace in life. Fasteners are widely used in many industries and the degree of standardization, serialization and generalization is extremely high.
Agree