What Constitutes Pneumatic Tools: Components, Pros, and Cons?
Knowledge

What Constitutes Pneumatic Tools: Components, Pros, and Cons?

A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.
Published: Aug 17, 2023
What Constitutes Pneumatic Tools: Components, Pros, and Cons?

What Is A Pneumatic Tool?

A pneumatic tool is a device that uses compressed air from an air compressor as the power source for the tool. Pneumatic tools are very sturdy and because they do not use electricity, can be used in areas where the tool may be exposed to inflammable, explosive, dusty, or humid, harsh environments. Owing to their high stability, long working life, and easy maintenance, they are widely used in industrial fields.

According to their basic operating mode, pneumatic tools are mainly divided into:

  • Rotary type (movable vane type)
  • Rotary type (movable vane type)

What Are the Components of A Pneumatic Tool?

  1. Power output:
    The power output component is one of the main parts of the pneumatic tool. It is composed of a pneumatic motor and power output gears. High-pressure compressed air blows the motor blades to make the motor rotor rotate. Output rotary motion is transformed through gears to drive the tool’s operation movements.
    Various types of motors are used to power pneumatic tools, including concentric motors and eccentric motors which use various vane functions in different arrangements. The number of air inlets can also vary so that you can have single air inlet motors, double air inlet motors, or multi-air inlet motors.
    No matter what form of air motor, compressed air blows the motor blades to drive the rotor to rotate. The motor blades are the most vulnerable part in the motor. When the motor blades rotate at high speed, friction is created on the inner wall of the stator, so the quality of the compressed air used and the content of lubricating oil particles in the compressed air have high requirement standards.
  2. Energy transformation from air pressure to motion:
    Air pressure is usually converted to rotary motions, only rarely is it converted to linear reciprocating motions. Conversion of rotary motion to the desired mechanical operation is accomplished through mechanical clutch and planetary gear sets. Rotary motion can be regulated to meet important parameters such as the torque, speed, and tightening accuracy of pneumatic tightening tools.
  3. Intake and exhaust part:
    The intake and exhaust ports are the channels where compressed air enters and exits the tool.
  4. Movement starts and stops control part:
    Because pneumatic tools are held in the hands for extended periods of time, they are prone to damage, so the engineering of the plastic control mechanisms is important.
  5. Energy supply part:
    The air compressor compresses air from the atmosphere, and this compressed air is transported through an air pipeline to the tool.
  6. Air filtration and air pressure adjustment part:
    因为压缩空气通常土石方运输ugh steel pipes, during long-term use, moisture in the compressed air will form rust, and dirt will accumulate on the inner wall of the pipes. If compressed air enters the tool without any treatment, it can lead to insufficient and unstable power output, or cause serious damage to the tool motor, shortening the life of the motor. Air filtration and adjustment devices must be installed somewhere in the pipeline between the air compressor and the pneumatic tools.A common accessory used along with a pneumatic tool is a 3-in-one pneumatic triplet. It incorporates the air filters, pressure reducing valves, and oil misters into one unit to prepare the air before it enters the tool. It generally filters down to 50-75μm, with a pressure regulation range of 0.5-10Mpa. The triplet needs to be maintained, cleaned, and replaced regularly.
  7. Tool accessories:
    Tool accessories refer to the tools installed on the pneumatic tool body that is in direct contact with the workpiece, and the pneumatic triplet undertakes this task. The pneumatic triplet is mainly composed of a barometer, a filter, a lubricator, a pressure regulator, etc. The filter has a built-in filter element, which needs to be maintained, cleaned, and replaced regularly after a period of use. If the compressed air directly enters the air motor without any treatment, the life of the motor will be shortened, resulting in insufficient and unstable power output of the entire tool, which is likely to cause serial damage to the motor and other components.
    Between the compressed air and the pneumatic tools, compressed air filtering and adjustment devices must be installed, including various types of pneumatic sleeves, connecting rods, adapters, cutter heads, etc.

Pneumatic Tools Features

其他配件包括工具头段d on the pneumatic tool body that are in direct contact with the workpiece. They are usually highly durable tools that can withstand harsh environments with high humidity, dust, and heat, and have a wide application range.

Application Fields of Pneumatic Tools

The industry applications of pneumatic tools is broad, including automobile manufacturing and repair, shipbuilding and ship repair, furniture production, construction, decoration, equipment maintenance, metal processing, aerospace, mechanical assembly, electronic assembly, home appliance assembly, casting, mold manufacturing, and other industries.

Advantages of Pneumatic Tools

  • Compared with electric tools, the price of pneumatic tools is generally cheaper, the purchase and maintenance costs are lower, and the construction and maintenance of compressed air systems is relatively simple and cheap.
  • Pneumatic tools offer quick action control and quick response times.
  • The air viscosity is small and the flow resistance is small, which is convenient for the centralized supply and long-distance transportation of the medium.
  • The structure of the pneumatic tool is simple and easy to construct. The technology is mature, the service life is long, pneumatic tools are very reliable, and they have consistent industry standardization and serialization.
  • The air to be compressed can be drawn from almost any environment and can be directly discharged back into the atmosphere after use without causing environmental pollution.

Disadvantages of Pneumatic Tools

  • If there is a change in the external load, due to the tools sensitivity to air pressure, the tool can respond with a severe change in action and speed. Stability of position and control of speed is poor.
  • Some systems operate under low pressure (generally less than 0.8MPa) with a low total output force.
  • The working medium (air) does not contain lubrication, so measures must be taken to lubricate the system.
  • The noise level is high so you generally need to install a muffler.

Pneumatic Tool Maintenance Precautions

  • Pneumatic tools should be maintained and tested by specially trained personnel. In case of abnormal operation or abnormal conditions, discontinue using and send the tool for inspection and repair.
  • Ensure that the air supply to the tool is dry and free of impurities.
  • Regular cleaning and maintenance, and timely replacement of worn parts is important.
  • To reduce wear and prolong the service life of the tool, before and after each use, the pneumatic tool air inlet should be filled with the proper oil for the tool.
  • To prolong the service life of the pneumatic tool, the three-point pneumatic triplet should be serviced regularly. The pressure should be checked to be sure it is set properly, filters should be changed, and the lubricating oil system (oil mist) should be refilled.
  • It is recommended to disassemble the pneumatic tool every 3 to 6 months, and carry out a major overhaul and comprehensive cleaning.
  • Use appropriate tools when disassembling and assembling a pneumatic tool.
  • Use the manufacturer's original parts when replacing parts, to avoid the decline of performance and increase of maintenance costs.
  • When the pneumatic tool needs to be repaired or maintained, be sure to disconnect the air tool from the air source, or close the air tube.
  • Before use, check to ensure that the assembly is correct, and all screws and fasteners are installed and tightened properly.
  • After each maintenance or repair, check the idle speed of the air tool before installing fittings and accessories on the shaft.
  • Store the pneumatic tools in a clean place after use, so that they can be used at any time in the future.
Published by Aug 17, 2023 Source:read01, Source:read01

Further reading

You might also be interested in ...

Headline
Knowledge
A Comprehensive Examination of Hyperautomation and its Impact on Business Processes
Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Headline
Knowledge
5 Essential Values to Understand Automation
The emergence of automation has had a great impact on many industries. Many highly repetitive factory operations may restrict production capacity. With the introduction of Industry 4.0, various technologies have led to the automation of production lines, from the supplying of raw materials, to assembly, distribution, and packaging. People are taking notice of these very important developments, and this article will explore some of these new forms of automation, and the value they bring.
Headline
Knowledge
Understanding the Role of Rotary Broaching
Rotary broaches (also known as oscillating or hexagonal broaches) are one of the commonly used CNC tools in metal-cutting production. It is used to process polygonal parts and inner holes (especially suitable for blind holes) and other special-shaped inner holes.
Headline
Knowledge
Frequently Employed Processing Techniques
In the field of manufacturing processing, common processing methods include broaching, boring, grinding, milling, etc.
Headline
Knowledge
The Functioning of Laser Cutting Machines
Laser cutting technology Compared with traditional cutting, the laser cutting process has better accuracy, and precise details are cut through a high-intensity laser beam.
Headline
Knowledge
How Familiar Are You with Hardware Fasteners?
When it comes to fasteners, everyone seems to know a little bit about it. After all, hardware such as screws and nuts are commonplace in life. Fasteners are widely used in many industries and the degree of standardization, serialization and generalization is extremely high.
Headline
Knowledge
What Types of Stamping Press Machines Exist and Their Respective Functions?
Metal stamping machines can be divided into hydraulic presses and mechanical presses, and both are often used in industrial metal forging applications.
Headline
Knowledge
What Constitutes A Boring Machine and Its Various Types?
Boring Machine is different from other machine tools and mainly suitable for boring machine processing.
Headline
Knowledge
Understanding Automation: Defining its Essence and 5 Key Values to Grasp
The emergence of automation has had a great impact on many industries. Many highly repetitive factory operations may restrict production capacity. With the introduction of Industry 4.0, various technologies have led to the automation of production lines, from the supplying of raw materials, to assembly, distribution, and packaging. People are taking notice of these very important developments, and this article will explore some of these new forms of automation, and the value they bring.
Headline
Knowledge
The Emergence of Hyperautomation: Unraveling its Significance
Hyperautomation is the use of the power of multiple technologies to achieve end-to-end automation. Hyperautomation is the process of continuously integrating automation into an organization's business processes, combining advanced technologies such as robotic process automation (RPA), artificial intelligence, and machine learning to enhance the results of human work. Not only does it automate key processes, but it also builds an automation ecosystem that finds more processes that can be automated without human intervention.
Headline
Knowledge
What Is the Working Principle of Wire Electrical Discharge Machining?
Industrial manufacturing requires machining tolerances. EDM machine can cut metal through electric current.
Headline
Knowledge
Ultrasonic Processing Technology: The Power of High-Frequency Sound Waves
Through ultrasonic-assisted processing technology, hard and brittle materials can be processed easily, reducing-edge chipping and improving surface quality.
Agree