The development of the wireless power industry is already changing the world today. Numerous applications provide power for consumer and industrial equipment. The wireless power industry is expected to grow exponentially. Wireless power has a major impact on almost all fields because it enables the Internet of Things to achieve and develop faster.
What is wireless power transmission technology?
Wireless power transmission, also known as wireless power transmission, non-contact power transmission, refers to the conversion of electrical energy into other forms of relay energy (such as electromagnetic field energy, lasers, microwaves, and mechanical waves). Through a transmitter, which is transmitted over a certain distance in the air, and then use the receiver to convert the relay energy into electrical energy to realize the transmission mode of wireless power transmission.
Wireless power transmission is the direct transmission of electrical energy (electricity) from the power supply equipment to the electrical device without wires or conductors, which is used to charge the battery or at the same time for its operation. Wireless transmission can usually use electromagnetic field coupling effects, including Inductive Coupling and Resonant Coupling. Broadly speaking, all radio wave propagation is a kind of energy transmission. The difference lies in the higher efficiency and power of wireless transmission.
The wireless transmitter can safely supply power to the receiver embedded in almost any device, similar to the way Wi-Fi sends data. Devices such as IoT sensors, temporary trackers, smartphones, game controllers, smartwatches, etc. can be equipped with receivers and send signals to the transmitter to safely receive power at a distance, which has achieved the application of wireless power.
What is the transmission principle of wireless power?
- Contact charging technology:
Using the principle of electromagnetic induction, this non-contact charging technology is increasingly widely used in many portable terminals. In this type, two coils are placed in adjacent positions, and when current flows in one coil, the generated magnetic flux becomes a medium, causing an electromotive force to also be generated in the other coil.
- Microwave energy transmission technology:
Microwave energy transmission applies the principle that electromagnetic wave energy can be sent and received through an antenna. Microwave energy transmission is to focus the microwaves and emit them in a directional direction. At the receiving end, the received microwave energy is converted into DC power through a rect2enna.
- Resonance technology:
The resonance method using electromagnetic fields is widely used in the electronic field. However, the power supply technology does not use electromagnetic waves or currents, but only uses electric fields or magnetic fields.
Advantages of wireless power-removing regulatory obstacles:
About the development trend of the transformative impact of wireless power in the future, which also includes the progress made by the wireless power industry in terms of supervision, so it helps that many wireless power applications are already improving efficiency, safety, and convenience.
Wireless power supply technology can transmit power through the air over long distances without sight, clearing key regulatory obstacles and paving the way for a wide range of consumer and industrial applications. In the United States, the FCC has issued several certifications for a patented technology that can provide wireless power safely and effectively. The RF-based non-line-of-sight wireless power long-distance technology can transmit power without limitation.
Application of wireless power supply:
- How will wireless power change logistics?
With regulatory approval, the wireless power industry has begun to provide enterprises with new choices. For example, the tracking system of truck trailers uses wireless power supply technology to effectively help the world's largest retailer save money and improve safety, and can save money and improve safety in busy distribution centers.
There are endless applications for transportation and logistics, retail, and almost any enterprise or consumer use case. Sensors that can track the location of pallets or containers over long distances without manual intervention will become a change in the global supply chain. Sensors can not only track location but also provide information about conditions (such as temperature and humidity) and handling (such as whether an item has fallen). This may drastically change the distribution of perishable and/or fragile items. When conditions change and items need to be moved, sensors can alert warehouse or retail personnel without the electrical infrastructure required by wired sensors.
- How will wireless power change healthcare?
Wireless power can also transform healthcare, freeing patients from the wires that currently need to power many devices that collect critical health data and alert caregivers when vital signs change. Using wirelessly powered devices can improve patient compliance by eliminating bulky batteries and allowing patients to wear the device anywhere.
In healthcare applications, wireless power supplies that support real-time data transmission can allow nursing teams and/or hospital systems to analyze information immediately, and can also establish an alarm system. When a patient’s vital signs change and immediate action is required, messages are automatically sent to patients, employees, family members, and emergency personnel.
- How will wireless power change the consumer sector?
The wireless power supply has the potential to alleviate the concerns of consumer opponents that the opportunity will be scrapped. In the case of a phone with wireless charging, the battery can be capped. In addition to mobile phone applications, consumers in the future will also be able to power their smart homes and personal gadgets through wireless transmission of power, including indoor wireless cameras, air quality, and temperature display devices, smart trackers that automatically charge at home, and users can be used during the day or a smartwatch that is worn at night and does not need to be taken off to charge, enabling people to collect data on sleep habits and fitness activities.
And another potential consumer is used in the game industry. Game controllers that can be powered without wires and heavy batteries can allow game developers to focus on enhancing connectivity and adapting to the player's actions. There are currently nearly 3 billion gamers in the world, and this number is still growing, so this is a huge market that can accept wireless power to drive innovation.
UAV technology is also a commodity that benefits from wireless power. Whether it is for home enthusiasts who want to keep drones powered during the flight using drones, or using drones in commercial environments (such as warehouses), heavy airborne batteries will be affecting the miniaturization of drones will also affect the distance that they can fly. With the development of wireless power technology, this problem is expected to be solved.
Prospects of wireless power tech supply:
Wireless energy has made great progress in a short period, and the industry will develop in an unprecedented way. The global development of wireless charging-related application technologies is mostly limited to low-power application markets such as consumer electronics and smartphones, and the transmission efficiency is also poor. The developed high-power wireless power transmission technology can be applied to non-contact charging fields such as unmanned aerial vehicles, unmanned ships, unmanned vehicles, and unmanned guided vehicles. The ultra-high conversion efficiency is unique in the world and has great commercial value. Look for wireless power in the coming months to unleash the full potential of the Internet of Things and inspire innovations across the business, healthcare, and consumer product development.